因为手边实在没有SRAM,要不就做板子,这样也太浪费时间和精力,何况我最终应该不会用到外部SRAM的,所以只好借助逻辑分析仪纸上谈兵了.
首先因为IO不足的问题,所以只能用MUX模式,而在MUX模式下,如果写外部储存器结构是SRAM,就不能进行NE片选,比较奇怪.常规SRAM接法应该是这样的:
/* PE0 = NBL0 - CH13 PE1 = NBL1 - CH14 PD14 = DA0 - CH4 PD15 = DA1 - CH5 PD0 = DA2 - CH6 PD1 = DA3 - CH7 PE7 = DA4 - CH8 PE8 = DA5 - CH9 PE9 = DA6 - CH10 PE10 = DA7 - CH11 PE11 = DA8 PE12 = DA9 PE13 = DA10 PE14 = DA11 PE15 = DA12 - CH15 PD8 = DA13 PD9 = DA14 PD10 = DA15 PD11 = A16 PD12 = A17 PD13 = A18 - CH12 PD4 = NOE - CH3 PD5 = NWE - CH2 PD7 = NE1 - CH1 PB7 = NL - CH0 */
其中NL接573锁存器,因为公16位需要锁存的,锁存前为数据,锁存后的输出为地址.因为地址是不能读的,所以不能在锁存后.而573是低电平锁存,所以在573之前还要加一个非门,或者用其他逻辑[其他我还真不知道],内存初始化就简单多了,与之前一样是一堆复用,我们这次要用逻辑分析仪观察,所以时间不能设置太短.初始化OK后可以直接通过指针访问,编译器指定等等,非常方便哦.
void FSMC_SRAM_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; FSMC_NORSRAMInitTypeDef FSMC_NORSRAMInitStructure; FSMC_NORSRAMTimingInitTypeDef readWriteTiming; /* PE0 = NBL0 - CH13 PE1 = NBL1 - CH14 PD14 = DA0 - CH4 PD15 = DA1 - CH5 PD0 = DA2 - CH6 PD1 = DA3 - CH7 PE7 = DA4 - CH8 PE8 = DA5 - CH9 PE9 = DA6 - CH10 PE10 = DA7 - CH11 PE11 = DA8 PE12 = DA9 PE13 = DA10 PE14 = DA11 PE15 = DA12 - CH15 PD8 = DA13 PD9 = DA14 PD10 = DA15 PD11 = A16 PD12 = A17 PD13 = A18 - CH12 PD4 = NOE - CH3 PD5 = NWE - CH2 PD7 = NE1 - CH1 PB7 = NL - CH0 */ /* PE7 - PE15 */ /* PD8 - PD15 */ /* PD0 - PD1 */ /* PD5 - NWE,PD4 - NOE,PD7 - NE1,PB7 - NL */ RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB | RCC_AHB1Periph_GPIOD | RCC_AHB1Periph_GPIOE, ENABLE); //使能PB,PD,PE时钟 RCC_AHB3PeriphClockCmd(RCC_AHB3Periph_FSMC, ENABLE); //使能FSMC时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;//PD0,1,4,5,8~15 AF OUT GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用输出 GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//100MHz GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//上拉 GPIO_Init(GPIOD, &GPIO_InitStructure);//初始化 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用输出 GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//100MHz GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//上拉 GPIO_Init(GPIOE, &GPIO_InitStructure);//初始化 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用输出 GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//100MHz GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//上拉 GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化 GPIO_PinAFConfig(GPIOD, GPIO_PinSource0, GPIO_AF_FSMC); //PD0,AF12 GPIO_PinAFConfig(GPIOD, GPIO_PinSource1, GPIO_AF_FSMC); //PD1,AF12 GPIO_PinAFConfig(GPIOD, GPIO_PinSource4, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOD, GPIO_PinSource5, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOD, GPIO_PinSource7, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOD, GPIO_PinSource8, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOD, GPIO_PinSource9, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOD, GPIO_PinSource10, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOD, GPIO_PinSource11, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOD, GPIO_PinSource12, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOD, GPIO_PinSource13, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOD, GPIO_PinSource14, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOD, GPIO_PinSource15, GPIO_AF_FSMC); //PD15,AF12 GPIO_PinAFConfig(GPIOE, GPIO_PinSource0, GPIO_AF_FSMC); //PE7,AF12 GPIO_PinAFConfig(GPIOE, GPIO_PinSource1, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOE, GPIO_PinSource7, GPIO_AF_FSMC); //PE7,AF12 GPIO_PinAFConfig(GPIOE, GPIO_PinSource8, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOE, GPIO_PinSource9, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOE, GPIO_PinSource10, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOE, GPIO_PinSource11, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOE, GPIO_PinSource12, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOE, GPIO_PinSource13, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOE, GPIO_PinSource14, GPIO_AF_FSMC); GPIO_PinAFConfig(GPIOE, GPIO_PinSource15, GPIO_AF_FSMC); //PE15,AF12 GPIO_PinAFConfig(GPIOB, GPIO_PinSource7, GPIO_AF_FSMC); readWriteTiming.FSMC_AddressSetupTime = 0x03; readWriteTiming.FSMC_AddressHoldTime = 0x03; readWriteTiming.FSMC_DataSetupTime = 0x03; readWriteTiming.FSMC_BusTurnAroundDuration = 0x03; readWriteTiming.FSMC_CLKDivision = 0x03; readWriteTiming.FSMC_DataLatency = 0x03; readWriteTiming.FSMC_AccessMode = FSMC_AccessMode_A; //模式A FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM1; FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Enable; FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_NOR; // FSMC_MemoryType_SRAM; //SRAM FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;//存储器数据宽度为16bit FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable; // FSMC_BurstAccessMode_Disable; FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low; FSMC_NORSRAMInitStructure.FSMC_AsynchronousWait = FSMC_AsynchronousWait_Disable; FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable; FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState; FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable; //存储器写使能 FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable; FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable; // 读写使用相同的时序 FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable; FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &readWriteTiming; FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &readWriteTiming; //读写同样时序 FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure); //初始化FSMC配置 FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM1, ENABLE); // 使能BANK1区域3 }
为了验证时序,我们在主程序,就做了这么一个设置:
while (1) { *(volatile uint8_t *)(((uint32_t)(0x60000000))) = 0xAA; *(volatile uint8_t *)(((uint32_t)(0x60000004))) = 0xA4; *(volatile uint8_t *)(((uint32_t)(0x60000008))) = 0xA8; *(volatile uint8_t *)(((uint32_t)(0x60000010))) = 0x1A; *(volatile uint8_t *)(((uint32_t)(0x60000020))) = 0x2A; *(volatile uint8_t *)(((uint32_t)(0x60000040))) = 0x4A; *(volatile uint8_t *)(((uint32_t)(0x60000003))) = 0xA3; *(volatile uint8_t *)(((uint32_t)(0x60000009))) = 0xA9; *(volatile uint8_t *)(((uint32_t)(0x60000011))) = 0xBB; *(volatile uint8_t *)(((uint32_t)(0x60000025))) = 0xA6; *(volatile uint8_t *)(((uint32_t)(0x60000027))) = 0xA7; *(volatile uint8_t *)(((uint32_t)(0x60000044))) = 0x95; *(volatile uint8_t *)(((uint32_t)(0x6007FFFF))) = 0x65; *(volatile uint8_t *)(((uint32_t)(0x60080000))) = 0x75; temp = *(volatile uint8_t *)(((uint32_t)(0x60000035))); temp = *(volatile uint8_t *)(((uint32_t)(0x60000071))); temp = *(volatile uint8_t *)(((uint32_t)(0x60000064))); for(temp = 0; temp < 5; temp++) { } *(volatile uint16_t *)(((uint32_t)(0x60000000))) = 0xAABB; *(volatile uint16_t *)(((uint32_t)(0x60000004))) = 0xA44A; *(volatile uint16_t *)(((uint32_t)(0x60000008))) = 0xA88A; *(volatile uint16_t *)(((uint32_t)(0x60000010))) = 0x1AA1; *(volatile uint16_t *)(((uint32_t)(0x60000020))) = 0x2AA2; *(volatile uint16_t *)(((uint32_t)(0x60000040))) = 0x4AA4; *(volatile uint16_t *)(((uint32_t)(0x60000003))) = 0xA3A3; *(volatile uint16_t *)(((uint32_t)(0x60000009))) = 0xA99A; *(volatile uint16_t *)(((uint32_t)(0x60000011))) = 0xBBCC; *(volatile uint16_t *)(((uint32_t)(0x60000025))) = 0xA6FF; *(volatile uint16_t *)(((uint32_t)(0x60000027))) = 0xA7EE; *(volatile uint16_t *)(((uint32_t)(0x60000044))) = 0x95DD; *(volatile uint16_t *)(((uint32_t)(0x6007FFFF))) = 0x65AA; *(volatile uint16_t *)(((uint32_t)(0x60080000))) = 0x75BB; dtemp = *(volatile uint16_t *)(((uint32_t)(0x60000035))); dtemp = *(volatile uint16_t *)(((uint32_t)(0x60000071))); dtemp = *(volatile uint16_t *)(((uint32_t)(0x60000064))); for(temp = 0; temp < 5; temp++) { }
通过抓去波形,看到两部分,第一部分是按Byte访问,第二部分是按Word访问(程序中可见):
明确要知道当CS[NE]为低的时候,SRAM才有效,当NL为低的时候,因为有非门,所以573的LE是高,输出保持不变.573的真值表如下:
OE
|
LE
|
D
|
Q
|
L
|
H
|
H
|
H
|
L
|
H
|
L
|
L
|
L
|
L
|
X
|
Q0
|
H
|
X
|
X
|
Z
|
如图:
接着等待写入数据:
访问了一个奇数地址0x60000003(如果是0x0x60000002,那么实际访问写入地址是0x01,但是NBL0是低,NBL1是高):
读取时候NOE拉低:
读取双字节时候,能自动控制NBL.
参考代码打包: